Πανελλαδικές: Με μαθήματα ειδικοτήτων συνεχίζουν οι υποψήφιοι των ΕΠΑΛ
15.06.2017
06:57
Συγκεκριμένα, πρόκειται για τα μαθήματα Μηχανές Καύσης ΙΙ (ΜΕΚ ΙΙ), Αρχές Επεξεργασίας Τροφίμων και Ποτών, Υγιεινή, Ιστορία των Τεχνών-Έργα και Δημιουργοί και Αρχές Οικονομικής Θεωρίας
Σε μαθήματα ειδικότητας εξετάζονται σήμερα, Πέμπτη, οι υποψήφιοι των Πανελλαδικών
από τα ΕΠΑΛ. Συγκεκριμένα, πρόκειται για τα εξής μαθήματα: Μηχανές Καύσης ΙΙ (ΜΕΚ ΙΙ), Αρχές Επεξεργασίας Τροφίμων και Ποτών, Υγιεινή, Ιστορία των Τεχνών-Έργα και Δημιουργοί και Αρχές Οικονομικής Θεωρίας.
Σε ό,τι αφορά στους συμμαθητές τους των Γενικών Λυκείων στα Μαθηματικά διαφαίνεται πανωλεθρία καθώς δυσκόλεψαν ιδιαίτερα τους υποψηφίους.
Σύμφωνα με την Ελληνική Μαθηματική Εταιρεία τα θέματα στα Μαθηματικά Κατεύθυνσης στα οποία εξετάστηκαν την περασμένη Παρασκευή οι υποψήφιοι των ομάδων Προσανατολισμού Θετικών Σπουδών και Οικονομίας – Πληροφορικής ήταν για δυνατούς λύτες .
Το μάθημα αυτό είναι αυξημένης βαρύτητας και, όπως δείχνουν τα μέχρι στιγμής στοιχεία πολύ απαιτητικά θέματα θα χαμηλώσουν τον πήχη των επιδόσεων και εκτιμάται ότι θα οδηγήσουν σε πτώση των βάσεων στις Σχολές των Θετικών Επιστημών, στα Πολυτεχνεία και τα τμήματα των Οικονομικών.
Σε ό,τι αφορά στους συμμαθητές τους των Γενικών Λυκείων στα Μαθηματικά διαφαίνεται πανωλεθρία καθώς δυσκόλεψαν ιδιαίτερα τους υποψηφίους.
Σύμφωνα με την Ελληνική Μαθηματική Εταιρεία τα θέματα στα Μαθηματικά Κατεύθυνσης στα οποία εξετάστηκαν την περασμένη Παρασκευή οι υποψήφιοι των ομάδων Προσανατολισμού Θετικών Σπουδών και Οικονομίας – Πληροφορικής ήταν για δυνατούς λύτες .
Το μάθημα αυτό είναι αυξημένης βαρύτητας και, όπως δείχνουν τα μέχρι στιγμής στοιχεία πολύ απαιτητικά θέματα θα χαμηλώσουν τον πήχη των επιδόσεων και εκτιμάται ότι θα οδηγήσουν σε πτώση των βάσεων στις Σχολές των Θετικών Επιστημών, στα Πολυτεχνεία και τα τμήματα των Οικονομικών.
Τα θέματα ήταν μάλιστα τόσο απαιτητικά, που δεν επαρκούσε ο χρόνος των τριών ωρών για τους υποψηφίους, ενώ η λύση τους δυσκόλεψε ακόμα και τους μαθηματικούς.
Για τα μαθηματικά αντιδρούν 100 Μαθηματικοί κατά της ΚΕΕ για τις οδηγίες που στάλθηκαν στα Βαθμολογικά Κέντρα. Οι μαθηματικοί λένε ότι «η οδηγία έρχεται σε αντίθεση με την μαθηματική λογική. Τιμωρεί τους ελεύθερα σκεπτόμενους μαθητές, έχει ως σκοπό την τιμωρία όλων όσων δεν σκέπτονται σε καλούπια και πρέπει να ακυρωθεί».
Στο κείμενο διαμαρτυρίας αναφέρεται χαρακτηριστικά: «Όχι, δεν διαμαρτυρόμαστε για την επιλεκτική δυσκολία των θεμάτων στο μάθημα των μαθηματικών. Δεν διαμαρτυρόμαστε ούτε για τον έμμεσο και βάναυσο περιορισμό της ύλης που τα τελευταία δύο χρόνια τείνει να παγιωθεί, αφού τα θέματα που επιλέγονται καλύπτουν λιγότερο από το μισό της ήδη περιορισμένης ύλης. Υπερασπιζόμαστε την ελευθερία της σκέψης και της έκφρασης των μαθητών μας, την οποία η διαφαινόμενη οδηγία της Κ.Ε.Ε («οποιαδήποτε άλλη αιτιολόγηση, εκτός από την χρήση αντιπαραδείγματος δεν βαθμολογείται») για την βαθμολόγηση του ερωτήματος Α2β, περιορίζει.
Όταν ζητήθηκε από τους μαθητές για πρώτη φορά φέτος αιτιολόγηση σε Σωστό-Λάθος, κανείς δεν περίμενε ότι θα βαθμολογηθούν κάποιες σκέψεις πριν μελετηθούν για την ορθότητα τους. Ακριβώς αυτό ζητάει η Κ.Ε.Ε από τους βαθμολογητές. Να μην βαθμολογήσουν οποιαδήποτε αιτιολόγηση δεν κάνει χρήση αντιπαραδείγματος. Αλήθεια, στην εκφώνηση του θέματος, υπάρχει νύξη για αντιπαράδειγμα, ώστε ο μαθητής να είναι υποχρεωμένος να απαντήσει μόνο με αυτόν τον τρόπο; Η γεωμετρική εποπτεία βαθμολογείται με 0. Οποιαδήποτε άλλη προσπάθεια αιτιολόγησης βαθμολογείται με 0.
Ας ξεκαθαρίσουμε αρχικά τι ζητήθηκε από τους μαθητές. Να αιτιολογήσουν ή να αποδείξουν την ορθότητα ενός συλλογισμού; Είναι άραγε το ίδιο πράγμα η αιτιολόγηση με την απόδειξη; Ας δούμε τι αναφέρουν οι Ball&Bass στο Balletal., 2002:
Οι Ball & Bass (στο Ball et al., 2002) ορίζουν τη «Μαθηματική Αιτιολόγηση» ως ένα σύνολο πρακτικών και κανόνων που είναι συλλογικό, όχι ατομικό ή ιδιοσυγκρασιακό, και που έχει τις ρίζες του στην πειθαρχία. Η Μαθηματική Αιτιολόγηση μπορεί να χρησιμεύσει είτε ως εργαλείο έρευνας για την ανακάλυψη και εξερεύνηση νέων ιδεών, είτε μπορεί να λειτουργήσει ως ένα εργαλείο αιτιολόγησης ή απόδειξης μαθηματικών ισχυρισμών.
Η Μαθηματική αιτιολόγηση, στηρίζεται σε δύο θεμέλια. Το ένα θεμέλιο, είναι ένα εξελισσόμενο σώμα της δημόσιας γνώσης - οι μαθηματικές ιδέες, οι διαδικασίες, οι μέθοδοι, και οι όροι που έχουν ήδη καθοριστεί και θεσπιστεί μέσα σε μια δεδομένη κοινότητα. Αυτό το σώμα της γνώσης αποτελεί το σημείο εκκίνησης, και είναι διαθέσιμο για δημόσια χρήση από τα μέλη της κοινότητας για την κατασκευή μαθηματικών ισχυρισμών και την προσπάθεια αιτιολόγησης αυτών των ισχυρισμών στους άλλους. Για τους μαθηματικούς, η βάση της δημόσιας γνώσης μπορεί να αποτελείται από ένα αξιωματικό σύστημα για κάποια μαθηματική δομή, συν ένα σώμα που είχε προηγουμένως αναπτύξει και δημόσια τις καθιερωμένες γνώσεις που προέρχονται από τα αξιώματα. Ως εκ τούτου, η βάση της δημόσιας μαθηματικής γνώσης ορίζει το μέγεθος των λογικών βημάτων που δεν απαιτούν περαιτέρω δικαιολόγηση και είναι αποδεκτά εντός ενός δεδομένου πλαισίου.Το δεύτερο θεμέλιο της μαθηματικής αιτιολόγησης είναι η μαθηματική γλώσσα- σύμβολα, όροι, σημειογραφία, ορισμοί, αναπαραστάσεις και κανόνες λογικής και σύνταξης για την ουσιαστική χρήση τους στη διαμόρφωση των ισχυρισμών και των σχέσεων που χρησιμοποιούνται για να τους αιτιολογήσουν. Ο όρος «Γλώσσα» χρησιμοποιείται εδώ για να αναφερθεί σε ολόκληρη την γλωσσική υποδομή που υποστηρίζει την μαθηματική επικοινωνία και τις απαιτήσεις της, για ακρίβεια, σαφήνεια, και οικονομία έκφρασης. Η γλώσσα είναι απαραίτητη για τη μαθηματική αιτιολόγηση και για την επικοινωνία σχετικά με τις μαθηματικές ιδέες, ισχυρισμούς, εξηγήσεις και αποδείξεις.
Άραγε την έκφραση «κάθε επιστημονικά τεκμηριωμένη άποψη είναι αποδεκτή» γιατί η Κ.Ε.Ε δεν την συμμερίζεται; Έχει το δικαίωμα να βάζει όρια στην σκέψη και να προαποφασίσει τι είναι σωστό και τι λάθος, να μην βαθμολογεί ακόμα και μια λιγότερο σωστή σκέψη, να έχει προδικάσει όλες τις ορθές σκέψεις των μαθητών που βρίσκουμε κάθε φορά στα τετράδια τους και μας εντυπωσιάζουν;
Η οδηγία αυτή έρχεται σε αντίθεση με την μαθηματική λογική. Τιμωρεί τους ελεύθερα σκεπτόμενους μαθητές, έχει ως σκοπό την τιμωρία όλων όσων δεν σκέπτονται σε καλούπια και πρέπει να ακυρωθεί».
Οι Πανελλαδικές ολοκληρώθηκαν πάντως για μεγάλο μέρος των υποψηφίων, καθώς την Παρασκευή εξετάζονται οι υποψήφιοι στις δύο Βιολογίες, την Προσανατολισμού και Γενικής Παιδείας, ενώ τη Δευτέρα θα εξεταστούν σε μαθήματα Γενικής Παιδείας Μαθηματικά και στοιχεία Στατιστικής και Ιστορία.
Για τα μαθηματικά αντιδρούν 100 Μαθηματικοί κατά της ΚΕΕ για τις οδηγίες που στάλθηκαν στα Βαθμολογικά Κέντρα. Οι μαθηματικοί λένε ότι «η οδηγία έρχεται σε αντίθεση με την μαθηματική λογική. Τιμωρεί τους ελεύθερα σκεπτόμενους μαθητές, έχει ως σκοπό την τιμωρία όλων όσων δεν σκέπτονται σε καλούπια και πρέπει να ακυρωθεί».
Στο κείμενο διαμαρτυρίας αναφέρεται χαρακτηριστικά: «Όχι, δεν διαμαρτυρόμαστε για την επιλεκτική δυσκολία των θεμάτων στο μάθημα των μαθηματικών. Δεν διαμαρτυρόμαστε ούτε για τον έμμεσο και βάναυσο περιορισμό της ύλης που τα τελευταία δύο χρόνια τείνει να παγιωθεί, αφού τα θέματα που επιλέγονται καλύπτουν λιγότερο από το μισό της ήδη περιορισμένης ύλης. Υπερασπιζόμαστε την ελευθερία της σκέψης και της έκφρασης των μαθητών μας, την οποία η διαφαινόμενη οδηγία της Κ.Ε.Ε («οποιαδήποτε άλλη αιτιολόγηση, εκτός από την χρήση αντιπαραδείγματος δεν βαθμολογείται») για την βαθμολόγηση του ερωτήματος Α2β, περιορίζει.
Όταν ζητήθηκε από τους μαθητές για πρώτη φορά φέτος αιτιολόγηση σε Σωστό-Λάθος, κανείς δεν περίμενε ότι θα βαθμολογηθούν κάποιες σκέψεις πριν μελετηθούν για την ορθότητα τους. Ακριβώς αυτό ζητάει η Κ.Ε.Ε από τους βαθμολογητές. Να μην βαθμολογήσουν οποιαδήποτε αιτιολόγηση δεν κάνει χρήση αντιπαραδείγματος. Αλήθεια, στην εκφώνηση του θέματος, υπάρχει νύξη για αντιπαράδειγμα, ώστε ο μαθητής να είναι υποχρεωμένος να απαντήσει μόνο με αυτόν τον τρόπο; Η γεωμετρική εποπτεία βαθμολογείται με 0. Οποιαδήποτε άλλη προσπάθεια αιτιολόγησης βαθμολογείται με 0.
Ας ξεκαθαρίσουμε αρχικά τι ζητήθηκε από τους μαθητές. Να αιτιολογήσουν ή να αποδείξουν την ορθότητα ενός συλλογισμού; Είναι άραγε το ίδιο πράγμα η αιτιολόγηση με την απόδειξη; Ας δούμε τι αναφέρουν οι Ball&Bass στο Balletal., 2002:
Οι Ball & Bass (στο Ball et al., 2002) ορίζουν τη «Μαθηματική Αιτιολόγηση» ως ένα σύνολο πρακτικών και κανόνων που είναι συλλογικό, όχι ατομικό ή ιδιοσυγκρασιακό, και που έχει τις ρίζες του στην πειθαρχία. Η Μαθηματική Αιτιολόγηση μπορεί να χρησιμεύσει είτε ως εργαλείο έρευνας για την ανακάλυψη και εξερεύνηση νέων ιδεών, είτε μπορεί να λειτουργήσει ως ένα εργαλείο αιτιολόγησης ή απόδειξης μαθηματικών ισχυρισμών.
Η Μαθηματική αιτιολόγηση, στηρίζεται σε δύο θεμέλια. Το ένα θεμέλιο, είναι ένα εξελισσόμενο σώμα της δημόσιας γνώσης - οι μαθηματικές ιδέες, οι διαδικασίες, οι μέθοδοι, και οι όροι που έχουν ήδη καθοριστεί και θεσπιστεί μέσα σε μια δεδομένη κοινότητα. Αυτό το σώμα της γνώσης αποτελεί το σημείο εκκίνησης, και είναι διαθέσιμο για δημόσια χρήση από τα μέλη της κοινότητας για την κατασκευή μαθηματικών ισχυρισμών και την προσπάθεια αιτιολόγησης αυτών των ισχυρισμών στους άλλους. Για τους μαθηματικούς, η βάση της δημόσιας γνώσης μπορεί να αποτελείται από ένα αξιωματικό σύστημα για κάποια μαθηματική δομή, συν ένα σώμα που είχε προηγουμένως αναπτύξει και δημόσια τις καθιερωμένες γνώσεις που προέρχονται από τα αξιώματα. Ως εκ τούτου, η βάση της δημόσιας μαθηματικής γνώσης ορίζει το μέγεθος των λογικών βημάτων που δεν απαιτούν περαιτέρω δικαιολόγηση και είναι αποδεκτά εντός ενός δεδομένου πλαισίου.Το δεύτερο θεμέλιο της μαθηματικής αιτιολόγησης είναι η μαθηματική γλώσσα- σύμβολα, όροι, σημειογραφία, ορισμοί, αναπαραστάσεις και κανόνες λογικής και σύνταξης για την ουσιαστική χρήση τους στη διαμόρφωση των ισχυρισμών και των σχέσεων που χρησιμοποιούνται για να τους αιτιολογήσουν. Ο όρος «Γλώσσα» χρησιμοποιείται εδώ για να αναφερθεί σε ολόκληρη την γλωσσική υποδομή που υποστηρίζει την μαθηματική επικοινωνία και τις απαιτήσεις της, για ακρίβεια, σαφήνεια, και οικονομία έκφρασης. Η γλώσσα είναι απαραίτητη για τη μαθηματική αιτιολόγηση και για την επικοινωνία σχετικά με τις μαθηματικές ιδέες, ισχυρισμούς, εξηγήσεις και αποδείξεις.
Άραγε την έκφραση «κάθε επιστημονικά τεκμηριωμένη άποψη είναι αποδεκτή» γιατί η Κ.Ε.Ε δεν την συμμερίζεται; Έχει το δικαίωμα να βάζει όρια στην σκέψη και να προαποφασίσει τι είναι σωστό και τι λάθος, να μην βαθμολογεί ακόμα και μια λιγότερο σωστή σκέψη, να έχει προδικάσει όλες τις ορθές σκέψεις των μαθητών που βρίσκουμε κάθε φορά στα τετράδια τους και μας εντυπωσιάζουν;
Η οδηγία αυτή έρχεται σε αντίθεση με την μαθηματική λογική. Τιμωρεί τους ελεύθερα σκεπτόμενους μαθητές, έχει ως σκοπό την τιμωρία όλων όσων δεν σκέπτονται σε καλούπια και πρέπει να ακυρωθεί».
Οι Πανελλαδικές ολοκληρώθηκαν πάντως για μεγάλο μέρος των υποψηφίων, καθώς την Παρασκευή εξετάζονται οι υποψήφιοι στις δύο Βιολογίες, την Προσανατολισμού και Γενικής Παιδείας, ενώ τη Δευτέρα θα εξεταστούν σε μαθήματα Γενικής Παιδείας Μαθηματικά και στοιχεία Στατιστικής και Ιστορία.
Ακολουθήστε το protothema.gr στο Google News και μάθετε πρώτοι όλες τις ειδήσεις
Δείτε όλες τις τελευταίες Ειδήσεις από την Ελλάδα και τον Κόσμο, τη στιγμή που συμβαίνουν, στο Protothema.gr
Δείτε όλες τις τελευταίες Ειδήσεις από την Ελλάδα και τον Κόσμο, τη στιγμή που συμβαίνουν, στο Protothema.gr